White Blood Cell Disorders

Nancy Berlinder, M.D.
Professor, Medicine
Harvard Medical School
Chief, Division of Hematology
Brigham and Women’s Hospital
O2 independent killing
acquisition of respiratory burst
phagocytosis
chemotaxis
acquisition of respiratory burst
O2 independent killing

granule mRNA

1o granule mRNA

2o granule mRNA

*
Cytokines Govern Myelopoiesis

- **GROWTH FACTORS/RECEPTORS**
 - Induce transcriptional program governing neutrophil maturation
 - G-CSF/G-CSFr
 - knock-out: relative neutropenia (20% PMN)
 - GM-CSF
 - knock-out: no defect in neutrophil maturation

- **G-CSF FUNCTION IN MYELOPOIESIS**
 - Proliferation of myeloid progenitors
 - Induction of myeloid maturation
 - Protection from apoptosis
 - Enhancement of neutrophil function
Life Span of the Neutrophil

- Maturation in the bone marrow: 7-10 days
- Circulation in the peripheral blood: 3-6 hours
- Duration in the tissues: 2-3 days
Peripheral WBC Count

<table>
<thead>
<tr>
<th>Pool</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myeloid Precursors</td>
<td>20%</td>
</tr>
<tr>
<td>Storage Pool</td>
<td>75%</td>
</tr>
<tr>
<td>Marginating Pool</td>
<td>3%</td>
</tr>
<tr>
<td>Circulating Pool</td>
<td>2%</td>
</tr>
</tbody>
</table>
Peripheral WBC Count

- Myeloid Precursors: 20%
- Storage Pool: 75%
- Marginating Pool: 3%
- Circulating Pool: 2%

- The peripheral neutrophil count reflects <5% of the total WBC pool during a period of 2% of the total WBC lifespan.

- Elevation of WBC counts:
 - Acute, rapid: changes in distribution (demargination)
 - Long term, chronic elevation: changes in production and release from storage pool

- Decreased WBC counts:
 - Defect in WBC production, increased destruction, or increased margination (sequestration)
A 43-year-old woman with elevated WBC

Previously healthy woman seen for routine office visit is noted to have a WBC 12K, with normal differential.
Repeated three weeks later- no change.
Hct 42; Plts 230K
Leukocytosis: Differential Diagnosis

SECONDARY TO OTHER ILLNESSES

- Infection
 - Acute: Demargination/release storage pool
 - Chronic: Granulomatous dx (leukoerythroblastic)
- Stress
- Drug-induced (steroids, β-agonists, lithium)
- Chronic inflammation (including smoking)
- Post-splenectomy
- Non-hematologic malignancy
- Marrow stimulation (ITP, hemolysis, CMT)
Leukocytosis: Differential Diagnosis

- SECONDARY TO OTHER ILLNESSES
 - Infection
 - Acute: Demargination/release storage pool
 - Chronic: Granulomatous dx (leukoerythroblastic)
 - Stress
 - Drug-induced (steroids, β-agonists, lithium)
 - Chronic inflammation (including smoking)
 - Post-splenectomy
 - Non-hematologic malignancy
 - Marrow stimulation (ITP, hemolysis, CMT)

- PRIMARY HEMATOLOGIC DISEASE
 - CML
 - Other MPD
Neutrophilia is usually reactive, indicative of a normal functioning bone marrow. Consequently, bone marrow evaluation is often unnecessary
Neutrophilia is usually reactive, indicative of a normal functioning bone marrow. Consequently, bone marrow evaluation is often unnecessary

- Repeat WBC to R/O factitious or artifactual elevation
- Evaluation for acute/chronic infection or inflammation
- LAP score-of limited value since bcr-abl testing
- FISH for bcr-abl
- Bone marrow exam: r/o granulomatous dx, fungus
CASE PRESENTATION

A 1-month-old boy with elevated WBC

- 1 month old infant with delayed umbilical cord separation
- High grade fever, MRSA infection, and WBC of 90,000
- Poorly healing skin lesions, otitis, failure to thrive
- Poor response to antibiotics
- What to do??

Adapted from Pediatr Transplantation 11:453-5, 2007
Leukocytosis: Differential Diagnosis

- PRIMARY HEMATOLOGIC DISEASE
 - Congenital
 - Hereditary neutrophilia
 - Down’s sx
 - Leukocyte Adhesion Deficiency
Adhesion Molecules and LAD

Pathogenesis:

- Defective integrin receptor common β chain (LAD I)
- Loss of expression of LFA-1, Mac-1 (C3biR), and gp150;95.
- Results in inability to ingest/kill microbes opsonized by C3bi
- Can also arise by an abnormality of selectin glycosylation that impairs leukocyte adhesion (LAD II)
Adhesion Molecules and LAD

Pathogenesis:

- Defective integrin receptor common β chain (LAD I)
- Loss of expression of LFA-1, Mac-1 (C3biR), and gp150;95.
- Results in inability to ingest/kill microbes opsonized by C3bi
- Can also arise by an abnormality of selectin glycosylation that impairs leukocyte adhesion (LAD II)

Clinical manifestations:

- elevated WBC
- recurrent infections, mainly cutaneous abscesses, gingivitis
- Many die before age 2
Adhesion Molecules and LAD

Pathogenesis:
- Defective integrin receptor common β chain (LAD I)
- Loss of expression of LFA-1, Mac-1 (C3biR), and gp150;95.
- Results in inability to ingest/kill microbes opsonized by C3bi
- Can also arise by an abnormality of selectin glycosylation that impairs leukocyte adhesion (LAD II)

Clinical manifestations:
- Elevated WBC
- Recurrent infections, mainly cutaneous abscesses, gingivitis
- Many die before age 2

Treatment:
- Stem cell transplant: treatment of choice (performed on the patient described here)
- G-CSF has been tried experimentally
<table>
<thead>
<tr>
<th>Neutrophil Count</th>
<th>Clinical Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1500</td>
<td>Normal</td>
</tr>
<tr>
<td>1000-1500</td>
<td>May be normal; no significant increased infection</td>
</tr>
<tr>
<td>500-1000</td>
<td>Some increased risk of infection; fever mx as outpt</td>
</tr>
<tr>
<td><500</td>
<td>Significant risk of infection; fevers managed w/ iv abx as inpatient; often few signs of infection.</td>
</tr>
</tbody>
</table>
<500 Neutrophils: Significant risk of infection in patient with acute neutropenia, chemotherapy induced neutropenia, etc.

- Most patients with chronic neutropenia don’t get into trouble until the count is < 200.

In chronic neutropenia, patients frequently have little or no manifestations of neutropenia with counts in the 50-100 range.
A 2-month old girl with agranulocytosis

- 2 mo old girl with fever, purulent otitis, and boils
- FH: 1 of 9 children; 4 had died at a young age
- Cultures + for *S. aureus*. Treated with streptomycin
- Peripheral smear: no granulocytes
- Marrow: maturation arrest at the promyelocyte stage
- Subsequent course: died at age of 6 months despite antibiotics with widespread infection, boils, thrush

Adapted from Kostmann, Acta Paediatr Scand 1956
Neutropenia: Differential Diagnosis

CONGENITAL NEUTROPENIAS

Benign neutropenia
- Constitutional neutropenia
- Benign neutropenia (familial, idiopathic)

Congenital
- Severe congenital neutropenia, including Kostmann’s syndrome

Cyclic neutropenia

Other rare disorders
- Chediak-Higashi
- Schwachmann-Diamond
Severe Congenital Neutropenia

- congenital agranulocytosis
- rare
- autosomal dominant, recessive, and sporadic cases reported.
- severe infections; survival dramatically changed by treatment with G-CSF
- high incidence (20-30% over 10 years) of evolution to AML.
Autosomal dominant form of SCN:

- linked to mutations in the neutrophil elastase (ELANE) gene
- Variable impact of different mutations on enzyme function
- Mutant ELANE accumulates in the cytoplasm, and activates the “unfolded protein response,” a cellular stress response that results in apoptosis.
- AML associated with a truncation mutation of the G-CSF receptor of uncertain pathogenetic significance
Severe Congenital Neutropenia

Autosomal recessive SCN:

- Kostmann’s Syndrome: original syndrome described 50 years ago
- Linked to mutations in HAX1, a mitochondrial protein associated with signal transduction
- Disruption of HAX1 in myeloid cells destabilizes the mitochondrial membrane and leads to apoptosis
Cyclic Neutropenia

- dominantly inherited
- cycle of neutropenia q 15-35 days
- marrow during neutropenia: myelocyte arrest
- Usually benign; patients with severe infections may respond to G-CSF
Cyclic Neutropenia

- dominantly inherited
- cycle of neutropenia q 15-35 days
- marrow during neutropenia: myelocyte arrest
- Usually benign; patients with severe infections may respond to G-CSF
- Like AD SCN, cyclic neutropenia has been linked to mutations in ELANE
- ELANE mutations found in essentially 100% of cyclic neutropenia
- NOT associated with an increased risk of AML
CASE PRESENTATION

38 yo woman with SLE and neutropenia

HPI:
- Age 14: pericarditis, Raynaud’s with prolonged period of bedrest. ?JRA; ?SLE
- Age 26: fatigue, adenopathy, oral ulcers, arthritis. Leukopenia, thrombocytopenia, +ANA, +ACA
- Age 30: miscarriage. Documented ACLA

MEDS:
- Plaquinil, ASA 81mg, Prednisone 5; recent taper from 50mg

EXAM: Malar rash; no active joint disease

LABS: WBC 1.8
Primary AIN:
- Seen primarily in children
- Caused by antibodies against neutrophil ags
- Average age of onset: 6-12 months
- Moderate to severe neutropenia
- Spontaneous remission over 2 yrs: 95%
- Treatment: Prophylactic antibiotics; G-CSF only with severe/recurrent infections
Autoimmune Neutropenia

Primary AIN:
- Seen primarily in children
- Caused by antibodies against neutrophil ags
- Average age of onset: 6-12 months
- Moderate to severe neutropenia
- Spontaneous remission over 2 yrs: 95%
- Treatment: Prophylactic antibiotics; G-CSF only with severe/recurrent infections

Secondary AIN
- Seen primarily in adults
- Associated with AID
- Associated with LGL
Occurs in approximately 50% of SLE patients
Marker of disease activity
Little impact on the course of the disease
Infectious complications correlate with immunosuppressive therapy rather than height of neutrophil count
Neutrophil-specific antibodies
 High incidence of neutrophil-associated IgG in SLE
 Poor correlation with neutropenia
Antineutrophil Antibody Testing

<table>
<thead>
<tr>
<th>ANTIGEN</th>
<th>PREVIOUS NOMENCLATURE</th>
<th>GLYCOPROTEIN</th>
<th>ALLELE FREQUENCY (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNA-1a</td>
<td>NA1</td>
<td>FcγIIIb (CD16)</td>
<td>58</td>
</tr>
<tr>
<td>HNA-1b</td>
<td>NA2</td>
<td>FcγIIIb (CD16)</td>
<td>88</td>
</tr>
<tr>
<td>HNA-1c</td>
<td>SH, NA3</td>
<td>FcγIIIb (CD16)</td>
<td>5-38</td>
</tr>
<tr>
<td>HNA-2a</td>
<td>NB1</td>
<td>CD177(gp50-64)</td>
<td>94</td>
</tr>
<tr>
<td>HNA-3a</td>
<td>5b</td>
<td>Gp70-95</td>
<td>97</td>
</tr>
<tr>
<td>HNA-4a</td>
<td>MART</td>
<td>CD11a</td>
<td>99</td>
</tr>
<tr>
<td>HNA-5a</td>
<td>OND</td>
<td>CD11b</td>
<td>96</td>
</tr>
</tbody>
</table>
Pitfalls of Antineutrophil Antibody Testing

- False positive results
 - abundant Fc receptors on neutrophils
 - high circulating antibody
 - circulating immune complexes
 - spontaneous fluorescence of neutrophils
 - spontaneous aggregation of neutrophils
 - fragility, with spontaneous lysis
Pitfalls of Antineutrophil Antibody Testing

- False positive results
 - abundant Fc receptors on neutrophils
 - high circulating antibody
 - circulating immune complexes
 - spontaneous fluorescence of neutrophils
 - spontaneous aggregation of neutrophils
 - fragility, with spontaneous lysis
- Effect on outcome remains undefined
 - no “gold standard”
 - non-neutropenic patients often have detectable antibody
 - poor correlation between level of antibody and degree of neutropenia
WHEN DO I CHECK ANTI-WBC ABS ON ADULT PATIENTS?
WHEN DO I CHECK ANTI-WBC ABS ON ADULT PATIENTS?

NEVER
58 yo man admitted with fever and cellulitis

PMH:
- hypercholesterolemia, NIDDM, arthritis
- Medications: naproxen, glucosamine, simvastatin

PE:
- Multiple joint deformities, splenomegaly, no adenopathy

CBC:
- Hct 40, Plt 200K; WBC 5900 w/90% lymphs, 1% polys
Autoimmune neutropenia in RA

Felty’s syndrome

- Typically in patients with longstanding RA
- Associated with end-organ RA manifestations (pulmonary fibrosis, vasculitis, rheumatoid nodules, Sjogren’s syndrome)
- Splenomegaly
- Considerable morbidity from bacterial infection
Autoimmune neutropenia in RA

Felty’s syndrome
- Typically in patients with longstanding RA
- Associated with end-organ RA manifestations (pulmonary fibrosis, vasculitis, rheumatoid nodules, Sjogren’s syndrome)
- Splenomegaly
- Considerable morbidity from bacterial infection

LGL-associated neutropenia
- Shares many features with Felty’s syndrome
- Monoclonal neoplastic disorder, while Felty’s traditionally is polyclonal
Autoimmune neutropenia in RA

Felty’s syndrome
- Typically in patients with longstanding RA
- Associated with end-organ RA manifestations (pulmonary fibrosis, vasculitis, rheumatoid nodules, Sjogren’s syndrome)
- Splenomegaly
- Considerable morbidity from bacterial infection

LGL-associated neutropenia
- Shares many features with Felty’s syndrome
- Monoclonal neoplastic disorder, while Felty’s traditionally is polyclonal

Both have a very high (90%) incidence of HLADR4, suggesting they are a spectrum of the same disease
65 yo man with sore throat and fever

PMH: chronic CHF and has been taking several cardiac drugs for 2 months

CBC: Hb 12; Plts 190K; WBC 0.7 with ANC 50
Drugs most commonly causing Agranulocytosis

<table>
<thead>
<tr>
<th>Category</th>
<th>Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-thyroid medications</td>
<td>Carbamizole, Methimazole, Thiouracil</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>Cephalosporins, Penicillins, Sulfonamides, Chloramphenicol</td>
</tr>
<tr>
<td>Anticonvulsants</td>
<td>Carbamazapine, Valproic Acid</td>
</tr>
</tbody>
</table>
Drug-Induced Neutropenia

- Idiosyncratic drug reaction leading to profound neutropenia or agranulocytosis
- Pathogenesis poorly understood, and studies are difficult because it is rare, sporadic, and transient.
 - Anti-neutrophil antibodies
 - Autoantibodies
 - Drug-dependent antibodies
 - Complement binding in some cases
 - Graves’ disease: antibodies that cross-react with TSH

Unlike chronic neutropenia, DIN is associated with significant morbidity and a mortality of 10%
A 31-year-old woman referred for neutropenia

HPI:
- Age 16: Episodic abdominal pain, fever, and vomiting
 - After multiple episodes: dx appendicitis
 - Symptoms resolved after appendectomy
- Post-operatively, WBC fell to 2000 with an ANC of 500
 Neutropenia has persisted ever since

PMH:
- In retrospect: frequent upper respiratory illnesses as a child, including several episodes of pneumonia
- 1 year ago: begun on weekly G-CSF

ROS: LUQ pain, nausea and vomiting for 1-2 days after taking G-CSF
Chronic Idiopathic Neutropenia

- Chronic neutropenia termed “Non-Immune Chronic Idiopathic Neutropenia in Adults (NI-CINA)”
- Normal marrow cytogenetics; variable cellularity (hypocellular/hypercellular)
- No evidence of autoimmune disease, nutritional deficiency, myelodysplasia
- Benign clinical course, often diagnosed on routine blood tests in asymptomatic patients

Pathophysiology

- NO IDEA!!!
- Majority remain totally unexplained
Management of the Neutropenic Patient

Diagnostic
- Stop potential offending drugs
- Bone marrow aspiration/biopsy
- Serologic studies: ANA, viral titers, anti-neutrophil antibodies
- R/O Primary malignancy:
 - Chromosome analysis
 - Sucrose-hemolysis test; flow cytometry
Management of the Neutropenic Patient

Diagnostic
- Stop potential offending drugs
- Bone marrow aspiration/biopsy
- Serologic studies: ANA, viral titers, anti-neutrophil antibodies
- R/O Primary malignancy:
 - Chromosome analysis
 - Sucrose-hemolysis test; flow cytometry

Therapeutic
- Aggressive treatment of infections
- Immune neutropenia: steroids, IgG
- LGL: low dose MTX
- G-CSF: SCN, CH, recovery from drugs
- Stem cell transplant: SCN
Treatment of Neutropenia: G-CSF or NO?

- Responses to G-CSF documented in neonatal, primary and secondary immune, and NI-CINA
 - Treatment is frequently unnecessary
 - Reserved for recurrent or serious infections
 - May cause flare of joint disease in setting of RA

- Shortens the time to neutrophil recovery in drug-induced neutropenia/agranulocytosis
 - Evidence-based data lacking: only randomized trial had only 24 patients, and used a subtherapeutic dose of G-CSF
 - Meta-analyses & retrospective analyses suggest shorter time to WBC recovery, reduced cost, ? reduced mortality
 - 10% mortality rate, safety and efficacy justify G-CSF use in this setting
CASE PRESENTATION

5 yo boy w/ sinusitis not responding well to antibiotics

HPI:
- 3 days PTA: fever, cheek pain
- Xray: opacification of R maxillary sinus
- Begun on oral antibiotics; admitted for poor response

PMH:
- Multiple episodes of otitis media in first two years of life, requiring tube placement
- S/p two episodes of pneumonia requiring hospitalization
- S. aureus abscess of the thigh at age 3

CBC:
- WBC 22,000, 88% polys, 5% bands
- Plts 608K
- Hb 9.9
Mechanisms of Neutrophil Function

Receptor function/chemotaxis/phagocytosis
- Leukocyte adhesion deficiency
- Hyper IgE syndrome (Job’s syndrome)
- Chediak-Higashi syndrome

Degranulation
- Specific granule deficiency

Oxygen-dependent killing
- Chronic granulomatous disease
- Neutrophil G6PD deficiency
- Glutathione reductase/synthase deficiency

Oxygen-independent killing
- Specific granule deficiency
- Myeloperoxidase deficiency
Chronic Granulomatous Disease

Etiology:
- Failure of the respiratory burst
- Decreased activity of NADPH oxidase
- Heterogeneous disorder
 - X-linked (gp91 phox)
 - Others autosomal recessive (67,41,22)

Clinical manifestations:
- Chronic recurrent infections
- Onset early in life
- Usual organisms: nonencapsulated bacteria (S. aureus, E. coli, other gnrs); fungi (candida, aspergillus)
Chronic Granulomatous Disease

Treatment

- IV antibiotics for infections
- Interferon gamma.
 - Multicenter trial of IFN showed 70% reduction in infections *despite* failure to demonstrate increased production of O₂
- Stem cell transplantation
- Gene therapy
 - Clinical trials of transplantation of transduced autologous CD34+ cells without marrow conditioning. Patients show low-level engraftment that decreases over time. Two patients showed long-term reconstitution with insertion in proto-oncogene loci; both subsequently developed MDS
3-year-old boy with fever, sore throat, poor response to abx

HPI:
- PTA: sore throat and high spiking fever despite antibiotics
- 10 days later, diffuse adenopathy and hepatosplenomegaly
- Cervical lymph node bx: malignant lymphoma
- Spontaneous remission over next 3 months
- 1 year later, recurrent adenopathy responsive to steroids
- Subsequent relapse with adenopathy, respiratory distress, and death
- Autopsy: infiltration of lung, liver, nodes, spleen, kidneys with immature lymphoid cells and histiocytes

PMH:
- Recurrent ulcerations of buccal mucosa from early age
- Light coloring, photophobia, nystagmus

FH: Sister with photophobia, nystagmus

Adapted from Blood 20:330, 1962
Chediak-Higashi Syndrome

Lazarchick, J. et al. ASH Image Bank 2005:101296
Chediak-Higashi Syndrome

Etiology:
- generalized defect of granule morphogenesis
- Neutrophils show multiple functional abnormalities, including impaired granule release
- Defects in the “LYST” gene, which appears involved in membrane fusion events and granule trafficking

Clinical manifestations:
- oculocutaneous albinism.
- Recurrent bacterial infections, neuropathies
- accelerated phase: hepatosplenomegaly, pancytopenia, and death, perhaps 2o EBV c/w hemophagocytic lymphohistiocytosis
Leukocytosis is usually reactive and the sign of a healthy bone marrow responding to external signals. Peripheral smear and PCR findings can usually provide clues to the less common primary marrow disorders associated with elevated neutrophils.
Leukocytosis is usually reactive and the sign of a healthy bone marrow responding to external signals. Peripheral smear and PCR findings can usually provide clues to the less common primary marrow disorders associated with elevated neutrophils.

Neutropenia is more commonly a manifestation of a primary marrow problem, although autoimmune disease and sequestration both occur.
Leukocytosis is usually reactive and the sign of a healthy bone marrow responding to external signals. Peripheral smear and PCR findings can usually provide clues to the less common primary marrow disorders associated with elevated neutrophils.

Neutropenia is more commonly a manifestation of a primary marrow problem, although autoimmune disease and sequestration both occur.

Functional neutrophil disorders are rare, but provide important insights into normal neutrophil biology.