Carcinoid Tumors, Carcinoid Syndrome, and Pancreatic Neuroendocrine Tumors

James D. Ahlgren, M.D.
Professor, Medicine and Pharmacology
The George Washington University School of Medicine and Health Sciences
Medical Oncologist
GW Medical Faculty Associates
DISCLOSURES

Off-Label Usage
 • None

Interests
 • None
Most GEP-NETs are sporadic

Some familial syndromes produce GEPNETs:

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Gene</th>
<th>Tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEN1</td>
<td>MEN1</td>
<td>PNETs</td>
</tr>
<tr>
<td>VHL</td>
<td>VHL</td>
<td>PNETs</td>
</tr>
<tr>
<td>TSC</td>
<td>TSC-1, TSC-2</td>
<td>PNETs</td>
</tr>
<tr>
<td>VR-NF</td>
<td>NF-1</td>
<td>PNETs, carcinoid</td>
</tr>
</tbody>
</table>

Inactivating mutations lead to syndrome
• Inactivating mutations (occasionally deletions) of the *MEN1* gene on 11q13 give rise to the MEN1 syndrome
• PNETs arise in 60-70% or MEN1 patients
• 10% of PNETs are associated with MEN1
• LOH at 11q13 is common in PNETs
 – 80% of MEN1-associated PNETS
 – 68% of sporadic PNETs
TSC1/TSC2 and NF-1

- Inactivated in TSC and VR-NF
- Wild types act as repressors of mTOR
 - Regulatory gene in PI3K pathway
 - Controls proliferation downstream of growth factors
- mTOR may be a target for therapy in PNET
Carcinoid Tumors

- Clinically an uncommon tumor
 - Clinical incidence 1.9 per 100,000 (SEER 1992-1999, but incidence rising rapidly)
 - Autopsy incidence 650 per 100,000
- Majority originate in GI tract
- Many produce bioactive amines
- Most clinically significant carcinoids originate in the midgut
CARCINOID TUMOR
оригин AND HISTOLOGY

• Arise from neuroendocrine cells
• Stain for NSE, chromogranin, synaptophosphin
• Neurosecretory granules on EM
• Histology cannot:
 – Distinguish site of origin of tumor
 – Predict clinical behavior of a typical carcinoid
<table>
<thead>
<tr>
<th>SITE</th>
<th>METASTASIZE</th>
<th>SYNDROME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>20-25%</td>
<td>(10% ACTH)</td>
</tr>
<tr>
<td>Stomach</td>
<td>20-30%</td>
<td><5%</td>
</tr>
<tr>
<td>Small bowel</td>
<td>>50%</td>
<td>>50%</td>
</tr>
<tr>
<td>Appendix</td>
<td>2%</td>
<td><1%</td>
</tr>
<tr>
<td>Rectum</td>
<td>10%</td>
<td><1%</td>
</tr>
</tbody>
</table>
APPENDICEAL CARCINOIDS

- Usually asymptomatic incidental finding
- About 1/250 appendectomies
- For lesions <1 cm:
 - Simple appendectomy
 - No cancer surgery
 - No follow-up necessary
- Mayo retrospective review:
 - 108 cases <1 cm with simple appendectomy
 - No recurrences
SMALL BOWEL CARCINOIDs

- Most common in terminal ileum
- The most clinically significant carcinoids
- Even small lesions can metastasize
- May remain subclinical for long periods
 - May not present until metastatic (carcinoid syndrome)
 - Pain is most common local presentation
 - Mesenteric fibrosis (high local serotonin) and buckling
 - Occasional mesenteric ischemia
- Surgical resection
RECTAL CARCINOIDS

- May also present as small incidental lesions
- 1/2500 endoscopies
- Lesions <1 cm almost never spread
 - Simple excision is adequate
- Lesions >2 cm can be aggressive
 - Usually LAR or APR
 - But survival benefit not proven
GASTRIC CARCINOIDS

- 75-80% Reactive to hypergastrinemia (gastrin is trophic to enterochromaffin cells)
 - Atrophic gastritis or PA (Type 1)
 - Usually indolent for a long period
 - Antrectomy
 - Octreotide
 - Zollinger-Ellison (Type 2)

- Sporadic carcinoids (20%, Type 3)
 - Aggressive, similar to small bowel
CARCINOID SYNDROME

• “This witch’s brew of unlikely signs and symptoms, intriguing to the most fastidious connoisseur of clinical esoterica -”

• “The skin underwent rapid and extreme changes - resembling in clinical miniature the fickle phantasmagoria of the aurora borealis.”

 — William Bean, Circulation 1955; 12:1
CARCINOID SYNDROME

- Carcinoids secrete bioactive amines and hormones (APUDomas)
- Serotonin is the mediator most frequently responsible for the carcinoid syndrome
- Symptoms: diarrhea, flushing, others
- Long-term complications: cardiac valvular disease, ileus, retroperitoneal fibrosis
CLINICAL MANIFESTATIONS

- Diarrhea 73%
- Flushing 65%
- Asthma/wheezing 8%
- Pellagra 2%
- None 12%

Moertel. JCO 1987; 5:1503
CARCINOID SYNDROME

- Serotonin is almost 100% metabolized on the first pass through the liver.
- Primary carcinoids of midgut do **not** lead to carcinoid syndrome until metastatic.
- Once venous drainage bypasses the liver, serotonin can reach the target organs, giving rise to **carcinoid syndrome**.
CARCINOID HEART DISEASE

• Fibrous endocardial thickening or plaque
• A consequence of extended high serotonin levels
• Right-sided manifestations more common:
 – Tricuspid regurgitation
 – Pulmonic stenosis
• Prevented by controlling serotonin level
• Advanced cases may require valve replacement
TREATMENT OPTIONS FOR CARCINOID SYNDROME

• Hepatic-directed therapy
 – Surgical resection
 – Thermal ablation
 – Chemoembolization
 – Radioembolization

• Block serotonin secretion or activity
 – Somatostatin analogs

• Systemic therapy
 – Somatostatin analogs
 – Targeted therapy
 – Chemotherapy
• A naturally-occurring GI hormone which downregulates the release of other GI hormones, including serotonin
• It would be potentially useful to treat or prevent symptoms of carcinoid syndrome
• But serum half-life is only 3 minutes
OCTREOTIDE

• Synthetic analog of native somatostatin
• Similar activity to somatostatin, binds to hSSTR2, 3, and 5
• Much longer serum half-life (113 minutes)
• Requires parenteral administration
• Has become standard therapy for symptomatic relief of carcinoid syndrome
• Long-acting depot (IM) formulation
MARKERS FOR CARCINOID

• Serum serotonin is NOT useful
 – Paroxysmal secretion – wide diurnal variation

• Serum chromogranin
 – Stable serum levels
 – Not metabolized in first pass through liver
 – Useful in all neuroendocrine cancers

• 24-hour urinary 5HIAA
 – Integrated measure of circulating serotonin
 – Normal <6 mg/24 hrs
 – Dietary restrictions
CARCINOID CRISIS

- Precipitated by crisis or stress
 - Anesthesia, procedures
- Profound hypotension
 - Occasionally hypertension
- Severe flushing
- Bronchospasm
- Can be life-threatening
- Prophylactic octreotide
PANCREATIC NEUROENDOCRINE TUMORS

- Clinical PNETs even rarer than carcinoids, 1-1.5 per 100,000 (about 500/year)
- Seen in 0.15% of random autopsies
- May have a variety of hormonal activity:
 - Gastrin Zollinger-Ellison
 - Insulin Hypoglycemia
 - VIP Pancreatic cholera
 - Glucagon Necrotizing migratory erythema
 - Somatostatin Diabetes, diarrhea, gallstones
- Commonly, may be hormonally inactive
PNET DIAGNOSIS

• Computed Tomography
 – Some active PNETs too small
• Magnetic Resonance Imaging
• Endoscopic Ultrasound (best resolution)
• Octreoscan
• F-DOPA PET (most sensitive)
• Venous sampling
OCTREOSCAN
METASTATIC DISEASE

- Hepatic-directed therapy
 - Radiofrequency ablation
 - Surgery
 - Chemoembolization
 - Radioembolization
- Chemotherapy
- Targeted therapy
 - Somatostatin analogs
 - m-TOR inhibitors
 - Sunitinib and other TKIs
- Radiotherapy
RF ABLATION

Electrode tines spread out within the tumor.

Electrode tines deliver radiofrequency energy to the tumor.
RF ABLATION FOR HEPATIC METASTASES FROM NEUROENDOCRINE TUMORS

- Cleveland Clinic experience
- 34 Patients, all neuroendocrine, 234 lesions
- 5% Morbidity, no mortality
- Complete symptom control 80%, partial 95%
- Median followup 1.6 years (1.0-5.4)
 - 59% Without hepatic progression
 - 41% New or progressive liver lesions
 - 25% New extrahepatic disease
 - 27% Died
- Median survival after ablation 1.6 years
CHEMОСEMBOLIZATION

- Lipiodol/Cisplatin/Doxorubicin/MMC
- 44 Patients, all neuroendocrine
- 5-year survival 50%
- Acceptable toxicity
 - Pain, fever, elevated liver enzymes
 - 25% grade 3
 - 1.4% 30-day mortality

Ruutiainen et al, J Vasc Interv Radiol 2007; 18:847
• Yttrium-90 microspheres
 – Beta emitter, 50-day half-life

• Review of 148 refractory patients
 – Objective response 63%
 – Median survival 70 mos.

Kennedy et al, Am J Clin Oncol Cancer Trials 2008; 31:271
Antiproliferative Activity of Interferon in Carcinoid

<table>
<thead>
<tr>
<th>Series</th>
<th>Patients</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Öberg (1986)</td>
<td>36</td>
<td>11%</td>
</tr>
<tr>
<td>Moertel (1989)</td>
<td>27</td>
<td>20%</td>
</tr>
<tr>
<td>Bajetta (1993)</td>
<td>34</td>
<td>12%</td>
</tr>
<tr>
<td>Saltz (1994)</td>
<td>14</td>
<td>7%</td>
</tr>
<tr>
<td>Faiss (2003)</td>
<td>27</td>
<td>4%</td>
</tr>
</tbody>
</table>
SOMATOSTATIN ANALOGS: CONTROL OF PROLIFERATION

- Anecdotal reports of (infrequent) objective tumor response to somatostatin analogs
- Increased median survival with metastatic carcinoid since introduction of SSAs\(^1\)
 - 1980-91 24 months
 - 1992-97 48 months
- Antiproliferative effects were quantitated in a prospective trial completed in 2009

\(^1\)Quaedvlieg et al, Ann Oncol 2001; 12:1295
ANTIPROLIFERATIVE ACTIVITY OF OCTREOTIDE

- Prospective randomized trial of octreotide LAR in metastatic midgut carcinoids
- Highly significant increase in PFS
 - Placebo 6 months
 - Octreotide 14.3 months
 - $p=0.000072$

- Rinke et al, J Clin Oncol 2009; 27:4656
ANTIPROLIFERATIVE ACTIVITY OF OCTREOTIDE

- Carcinoid cells express five different receptors for somatostatin, hSSTR1-5
- Binding to hSSTR3 induces p53 and apoptosis
- Binding to others induces Rb and G1 arrest
- Octreotide binds avidly to hSSTR2, less avidly to hSSTR5 and, considerably less avidly, to hSSTR3
- Not all GEP-NETS express hSSTR3.
SOMATOSTATIN RECEPTORS

<table>
<thead>
<tr>
<th>Receptor</th>
<th>hSSTR1</th>
<th>hSSTR2</th>
<th>hSSTR3</th>
<th>hSSTR4</th>
<th>hSSTR5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormonal</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cycle arrest</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Apoptosis</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Binding affinity (IC$_{50}$, nM):

- Somatostatin: 2.26, 0.23, 1.43, 1.77, 0.88
- Octreotide: 1140, 0.56, 34, 7030, 7
- Lanreotide: 2230, 0.76, 107, 2100, 5.3

Grozinsky-Glassberg, Endocrine-Related Cancer Res 2009; 27:4656
m-TOR INHIBITION

- **Everolimus in PNETs**
 - Phase III trial in 410 progressing patients
 - PFS 11.0 mos. vs 4.6 mos. for placebo (p<.001)
 - 5% objective response rate
 - No difference in survival (73% of placebo patients crossed over), median not reached.

SUNITINIB

• Phase III trial in PNETs\(^1\)
 – 171 patients randomized to sunitinib vs placebo
 – Discontinued because of clear PFS advantage
 – PFS 11.4 mos. vs 5.5 mos.
 – Objective response 9.3%

• Phase II trial in PNETs and carcinoid\(^2\)
 – ORR 16.7% in PNET, 2.4% in carcinoid
 – PFS 10.2 mos in PNET, 7.7 mos. in carcinoid

\(^1\)New Engl J Med 2011; 364:501
\(^2\)JCO 2008; 26:3403
SINGLE-AGENT CHEMOTHERAPY

<table>
<thead>
<tr>
<th></th>
<th>PNET</th>
<th>Carcinoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptozocerin</td>
<td>36%</td>
<td>30%</td>
</tr>
<tr>
<td>5FU</td>
<td>26%</td>
<td>26%</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>20%</td>
<td>21%</td>
</tr>
<tr>
<td>Dacarbazine</td>
<td>33%</td>
<td>16%</td>
</tr>
<tr>
<td>Temozolomide</td>
<td>8%</td>
<td>16%</td>
</tr>
</tbody>
</table>
COMBINATION CHEMOTHERAPY

- PNETs thought relatively chemosensitive
- Combinations studied in PNETs:
 - STZ-DOX 69%* (18 month survival)
 - STZ-5FU 45%* (14 month survival)
 - FAS 39% (37 month survival)
 - CAP/TEM 70% (PFS 18 mos, 92% 2-yr surv.)
- One report of lower activity for STZ-DOX
 - Only 1 response in 16 consecutive patients
- Carcinoid significantly less chemosensitive

*Did not use RECIST criteria
CAPECITABINE/TEMOZOLOMIDE

• Four-week cycles:
 – Capecitabine 750 mg/m2 q12h days 1-14
 – Temozolomide 200 mg/m2 qd days 10-14

• First-line PNETs (30 patients)\(^1\)
 – CR+PR 70%
 – PFS 18 mos.
 – 2-yr survival 92%

• Refractory GEP-NETs (18 patients)\(^2\)
 – CR+PR 61% (one path CR in carcinoid)
 – PFS 14 mos.
 – OS 83 mos.

1. Strosberg et al, Cancer 2011; 117:268
RADIOTHERAPY

- Carcinoid is a radiosensitive tumor
- Two reports of 54-55% objective response to RT1,2
- Anecdotal report of long-term survivors after total abdominal irradiation3
- Radiation usually controls osseous metastases
 - 1. Schupak, IJROBP 1991; 20:489
 - 3. Gaitan-Gaitan, IJROBP 1975; 1-9
A MANAGEMENT STRATEGY

- Hepatic resection if possible with curative intent
- Hepatic-directed therapy (surgery, thermal ablation, chemoembolization, radioembolization) if major debulking will result
- Somatostatin analog for all patients with residual disease
- Further selected therapy on progression